163 research outputs found

    Robust Feature Selection by Mutual Information Distributions

    Full text link
    Mutual information is widely used in artificial intelligence, in a descriptive way, to measure the stochastic dependence of discrete random variables. In order to address questions such as the reliability of the empirical value, one must consider sample-to-population inferential approaches. This paper deals with the distribution of mutual information, as obtained in a Bayesian framework by a second-order Dirichlet prior distribution. The exact analytical expression for the mean and an analytical approximation of the variance are reported. Asymptotic approximations of the distribution are proposed. The results are applied to the problem of selecting features for incremental learning and classification of the naive Bayes classifier. A fast, newly defined method is shown to outperform the traditional approach based on empirical mutual information on a number of real data sets. Finally, a theoretical development is reported that allows one to efficiently extend the above methods to incomplete samples in an easy and effective way.Comment: 8 two-column page

    Distribution of Mutual Information from Complete and Incomplete Data

    Full text link
    Mutual information is widely used, in a descriptive way, to measure the stochastic dependence of categorical random variables. In order to address questions such as the reliability of the descriptive value, one must consider sample-to-population inferential approaches. This paper deals with the posterior distribution of mutual information, as obtained in a Bayesian framework by a second-order Dirichlet prior distribution. The exact analytical expression for the mean, and analytical approximations for the variance, skewness and kurtosis are derived. These approximations have a guaranteed accuracy level of the order O(1/n^3), where n is the sample size. Leading order approximations for the mean and the variance are derived in the case of incomplete samples. The derived analytical expressions allow the distribution of mutual information to be approximated reliably and quickly. In fact, the derived expressions can be computed with the same order of complexity needed for descriptive mutual information. This makes the distribution of mutual information become a concrete alternative to descriptive mutual information in many applications which would benefit from moving to the inductive side. Some of these prospective applications are discussed, and one of them, namely feature selection, is shown to perform significantly better when inductive mutual information is used.Comment: 26 pages, LaTeX, 5 figures, 4 table

    Updating beliefs with incomplete observations

    Get PDF
    Currently, there is renewed interest in the problem, raised by Shafer in 1985, of updating probabilities when observations are incomplete. This is a fundamental problem in general, and of particular interest for Bayesian networks. Recently, Grunwald and Halpern have shown that commonly used updating strategies fail in this case, except under very special assumptions. In this paper we propose a new method for updating probabilities with incomplete observations. Our approach is deliberately conservative: we make no assumptions about the so-called incompleteness mechanism that associates complete with incomplete observations. We model our ignorance about this mechanism by a vacuous lower prevision, a tool from the theory of imprecise probabilities, and we use only coherence arguments to turn prior into posterior probabilities. In general, this new approach to updating produces lower and upper posterior probabilities and expectations, as well as partially determinate decisions. This is a logical consequence of the existing ignorance about the incompleteness mechanism. We apply the new approach to the problem of classification of new evidence in probabilistic expert systems, where it leads to a new, so-called conservative updating rule. In the special case of Bayesian networks constructed using expert knowledge, we provide an exact algorithm for classification based on our updating rule, which has linear-time complexity for a class of networks wider than polytrees. This result is then extended to the more general framework of credal networks, where computations are often much harder than with Bayesian nets. Using an example, we show that our rule appears to provide a solid basis for reliable updating with incomplete observations, when no strong assumptions about the incompleteness mechanism are justified.Comment: Replaced with extended versio

    ISIPTA'07: Proceedings of the Fifth International Symposium on Imprecise Probability: Theories and Applications

    Get PDF
    B

    Limits of Learning about a Categorical Latent Variable under Prior Near-Ignorance

    Get PDF
    In this paper, we consider the coherent theory of (epistemic) uncertainty of Walley, in which beliefs are represented through sets of probability distributions, and we focus on the problem of modeling prior ignorance about a categorical random variable. In this setting, it is a known result that a state of prior ignorance is not compatible with learning. To overcome this problem, another state of beliefs, called \emph{near-ignorance}, has been proposed. Near-ignorance resembles ignorance very closely, by satisfying some principles that can arguably be regarded as necessary in a state of ignorance, and allows learning to take place. What this paper does, is to provide new and substantial evidence that also near-ignorance cannot be really regarded as a way out of the problem of starting statistical inference in conditions of very weak beliefs. The key to this result is focusing on a setting characterized by a variable of interest that is \emph{latent}. We argue that such a setting is by far the most common case in practice, and we provide, for the case of categorical latent variables (and general \emph{manifest} variables) a condition that, if satisfied, prevents learning to take place under prior near-ignorance. This condition is shown to be easily satisfied even in the most common statistical problems. We regard these results as a strong form of evidence against the possibility to adopt a condition of prior near-ignorance in real statistical problems.Comment: 27 LaTeX page
    corecore